CAROTINOIDS OF Cudrania tricuspidata FRUIT

E. N. Novruzov and U. M. Agamirov

UDC 547.972:581.47

A serious problem in phytochemistry is to identify new sources with high carotinoid contents. In continuation of studies of plants that contain pigments [1-4], we investigated ripe fruit of *Cudrania tricuspidata* Bur. (Moraceae), a new species of cultured plant for Azerbaidzhan. Fruit samples were collected from plants introduced in the Botanical Garden of the Azerbaidzhan National Academy of Sciences (1999-2001).

The extraction of carotinoid pigments, purification, chromatographic separation, and spectral analyses were performed as previously described [1, 4-6]. Using TLC on Silufol and paper chromatography on Filtrax N15, *n*-hexane:diethylether (1:1, 8:2, 2), and authentic carotinoids from carrot, tomato, and seabuckthorn, we detected nine carotinoids [1, 6, 7].

The carotinoid bands were scraped off and eluted by $CHCl_3$: C_6H_{14} (7:3). The purity of the carotinoids was determined by TLC on Silufol. Absorption spectra were recorded on a Specord spectrophotometer in $CHCl_3$ and C_6H_{14} . Table 1 lists certain properties of the isolated carotinoids.

By comparing maxima in the range 200-600 nm, R_f values, colors of the isolated carotinoids, and standards, we identified in the fruit the following carotinoids: phytofluin, α - and β -carotene, neo- β -carotene, lycopene, polycopene, zeaxanthin, ruboxanthin, and lutein.

Photoelectrocolorimetry showed that the carotinoid content in the fruit depends on the meterological conditions and varies in the range 20.8-24.3 mg% of the fresh mass. The highest amount of total carotinoids was found in the drier year 2000 (24.3 mg%).

According to the analysis, the composition of the carotinoids in the fruit was phytofluin, 0.8; α -carotene, 2.6; β -carotene, 3.5; neo- β -carotene, 0.8; lycopene, 5.0; polycopene, 1.7; zeaxanthin, 3.4; ruboxanthin, 2.5, and lutein, 1.8 mg% of the fresh mass

The qualitative and quantitative contents of carotinoids in this plant species have not been previously reported. A method for obtaining carotinoids and a food concentrate from the fruit was developed.

TARIF 1	Certain Properties	of Carotinoids from	Cudrania tricuspidata Bur.
IADLE I.	Certain Frobenies	Of Carolinoids from	Cuarama micuspiaaia bu i.

Constinui I	R _f in system 1	$\lambda_{ m max}$		G.1
Carotinoids		in CHCl ₃	in hexane	Color
Phytofluin	0.99	-	332, 347, 368	Colorless
β -Carotene	0.98	450, 475, 505	425, 453, 484	Orange
α-Carotene	0.96	432, 457, 485	420, 445, 474	Yellow
Neo- β -carotene	0.70	458, 476	444, 475	Pink
Polycopene	0.67	454, 484	434, 470	Pink
Lycopene	0.47	458, 484, 518	447, 471, 501	Reddish-pink
Zeaxanthin	0.17	429, 462, 494	428, 452, 483	Yellow
Ruboxanthin	0.10	439, 473, 508	433, 460, 483	Orange
Lutein	0.05	428, 455, 486	420, 448, 476	Yellow

Botany Institute, National Academy of Sciences, Republic of Azerbaidzhan, Baku. Translated from Khimiya Prirodnykh Soedinenii, No. 5, p. 382, September-October, 2002. Original article submitted August 7, 2002.

REFERENCES

- 1. E. N. Novruzov, Khim. Prir. Soedin., 98 (1981).
- 2. E. N. Novruzov and L. A. Shamsizade, in: *IInd Int. Symp. on the Chem. Natur. Compounds*, Eskisehir, Turkey (1996), 67.
- 3. E. N. Novruzov, *Proceedings of the First All-Russian Conf. on Botanical Resource Management* [in Russian], St. Petersburg (1996), 202.
- 4. E. N. Novruzov, *Materials of the IIIrd Int. Symp. "New and Nontraditional Plants and Prospects for their Use,"* Pushchino (1999), 257.
- 5. S. M. Aslanov, E. N. Novruzov, O. V. Ibadov, and L. A. Shamsizade, Avtor. svid. No. 878,770 (1981).
- 6. E. N. Novruzov, S. M. Aslanov, S. Sh. Mamedov, and L. A. Shamsizade, in: Abstracts of Papers of the Vth Transcaucasus Conf. on Absorb. and Chromatogr., (1982), 101.
- 7. T. W. Goodwin, *Chemistry and Biochemistry of Plant Pigments*, Academic Press, London, New York, and San Francisco (1976), p. 373.